Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Short-Term Environmental Conditioning Enhances Tumorigenic Potential of Triple-Negative Breast Cancer Cells.

Identifieur interne : 000237 ( Main/Exploration ); précédent : 000236; suivant : 000238

Short-Term Environmental Conditioning Enhances Tumorigenic Potential of Triple-Negative Breast Cancer Cells.

Auteurs : Samantha S. Eckley [États-Unis] ; Johanna M. Buschhaus [États-Unis] ; Brock A. Humphries ; Tanner H. Robison [États-Unis] ; Kathryn E. Luker [États-Unis] ; Gary D. Luker [États-Unis]

Source :

RBID : pubmed:31893233

Descripteurs français

English descriptors

Abstract

Tumor microenvironments expose cancer cells to heterogeneous, dynamic environments by shifting availability of nutrients, growth factors, and metabolites. Cells integrate various inputs to generate cellular memory that determines trajectories of subsequent phenotypes. Here we report that short-term exposure of triple-negative breast cancer cells to growth factors or targeted inhibitors regulates subsequent tumor initiation. Using breast cancer cells with different driver mutations, we conditioned cells lines with various stimuli for 4 hours before implanting these cells as tumor xenografts and quantifying tumor progression by means of bioluminescence imaging. In the orthotopic model, conditioning a low number of cancer cells with fetal bovine serum led to enhancement of tumor-initiating potential, tumor volume, and liver metastases. Epidermal growth factor and the mTORC1 inhibitor ridaforolimus produced similar but relatively reduced effects on tumorigenic potential. These data show that a short-term stimulus increases tumorigenic phenotypes based on cellular memory. Conditioning regimens failed to alter proliferation or adhesion of cancer cells in vitro or kinase signaling through Akt and ERK measured by multiphoton microscopy in vivo, suggesting that other mechanisms enhanced tumorigenesis. Given the dynamic nature of the tumor environment and time-varying concentrations of small-molecule drugs, this work highlights how variable conditions in tumor environments shape tumor formation, metastasis, and response to therapy.

DOI: 10.18383/j.tom.2019.00019
PubMed: 31893233
PubMed Central: PMC6935992


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Short-Term Environmental Conditioning Enhances Tumorigenic Potential of Triple-Negative Breast Cancer Cells.</title>
<author>
<name sortKey="Eckley, Samantha S" sort="Eckley, Samantha S" uniqKey="Eckley S" first="Samantha S" last="Eckley">Samantha S. Eckley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Buschhaus, Johanna M" sort="Buschhaus, Johanna M" uniqKey="Buschhaus J" first="Johanna M" last="Buschhaus">Johanna M. Buschhaus</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</nlm:affiliation>
<wicri:noCountry code="subField">MI; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Humphries, Brock A" sort="Humphries, Brock A" uniqKey="Humphries B" first="Brock A" last="Humphries">Brock A. Humphries</name>
<affiliation>
<nlm:affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</nlm:affiliation>
<wicri:noCountry code="subField">MI; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Robison, Tanner H" sort="Robison, Tanner H" uniqKey="Robison T" first="Tanner H" last="Robison">Tanner H. Robison</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</nlm:affiliation>
<wicri:noCountry code="subField">MI; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Luker, Kathryn E" sort="Luker, Kathryn E" uniqKey="Luker K" first="Kathryn E" last="Luker">Kathryn E. Luker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Luker, Gary D" sort="Luker, Gary D" uniqKey="Luker G" first="Gary D" last="Luker">Gary D. Luker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</nlm:affiliation>
<wicri:noCountry code="subField">MI; and</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31893233</idno>
<idno type="pmid">31893233</idno>
<idno type="doi">10.18383/j.tom.2019.00019</idno>
<idno type="pmc">PMC6935992</idno>
<idno type="wicri:Area/Main/Corpus">000138</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000138</idno>
<idno type="wicri:Area/Main/Curation">000138</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000138</idno>
<idno type="wicri:Area/Main/Exploration">000138</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Short-Term Environmental Conditioning Enhances Tumorigenic Potential of Triple-Negative Breast Cancer Cells.</title>
<author>
<name sortKey="Eckley, Samantha S" sort="Eckley, Samantha S" uniqKey="Eckley S" first="Samantha S" last="Eckley">Samantha S. Eckley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Buschhaus, Johanna M" sort="Buschhaus, Johanna M" uniqKey="Buschhaus J" first="Johanna M" last="Buschhaus">Johanna M. Buschhaus</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</nlm:affiliation>
<wicri:noCountry code="subField">MI; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Humphries, Brock A" sort="Humphries, Brock A" uniqKey="Humphries B" first="Brock A" last="Humphries">Brock A. Humphries</name>
<affiliation>
<nlm:affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</nlm:affiliation>
<wicri:noCountry code="subField">MI; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Robison, Tanner H" sort="Robison, Tanner H" uniqKey="Robison T" first="Tanner H" last="Robison">Tanner H. Robison</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</nlm:affiliation>
<wicri:noCountry code="subField">MI; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Luker, Kathryn E" sort="Luker, Kathryn E" uniqKey="Luker K" first="Kathryn E" last="Luker">Kathryn E. Luker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Luker, Gary D" sort="Luker, Gary D" uniqKey="Luker G" first="Gary D" last="Luker">Gary D. Luker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</nlm:affiliation>
<wicri:noCountry code="subField">MI; and</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Tomography (Ann Arbor, Mich.)</title>
<idno type="eISSN">2379-139X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Carcinogenesis (MeSH)</term>
<term>Cell Adhesion (MeSH)</term>
<term>Cell Count (MeSH)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Cell Proliferation (MeSH)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Disease Progression (MeSH)</term>
<term>Epidermal Growth Factor (pharmacology)</term>
<term>Extracellular Signal-Regulated MAP Kinases (pharmacology)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Luminescent Measurements (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (antagonists & inhibitors)</term>
<term>Neoplasm Metastasis (MeSH)</term>
<term>Proto-Oncogene Proteins c-akt (pharmacology)</term>
<term>Serum Albumin, Bovine (pharmacology)</term>
<term>Sirolimus (analogs & derivatives)</term>
<term>Sirolimus (pharmacology)</term>
<term>Triple Negative Breast Neoplasms (pathology)</term>
<term>Tumor Microenvironment (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adhérence cellulaire (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Carcinogenèse (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (antagonistes et inhibiteurs)</term>
<term>Extracellular Signal-Regulated MAP Kinases (pharmacologie)</term>
<term>Facteur de croissance épidermique (pharmacologie)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Mesures de luminescence (MeSH)</term>
<term>Microenvironnement tumoral (MeSH)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Métastase tumorale (MeSH)</term>
<term>Numération cellulaire (MeSH)</term>
<term>Prolifération cellulaire (MeSH)</term>
<term>Protéines proto-oncogènes c-akt (pharmacologie)</term>
<term>Sirolimus (analogues et dérivés)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sérumalbumine bovine (pharmacologie)</term>
<term>Tumeurs du sein triple-négatives (anatomopathologie)</term>
<term>Évolution de la maladie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Epidermal Growth Factor</term>
<term>Extracellular Signal-Regulated MAP Kinases</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>Serum Albumin, Bovine</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Tumeurs du sein triple-négatives</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Triple Negative Breast Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Extracellular Signal-Regulated MAP Kinases</term>
<term>Facteur de croissance épidermique</term>
<term>Protéines proto-oncogènes c-akt</term>
<term>Sirolimus</term>
<term>Sérumalbumine bovine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Carcinogenesis</term>
<term>Cell Adhesion</term>
<term>Cell Count</term>
<term>Cell Line, Tumor</term>
<term>Cell Proliferation</term>
<term>Disease Models, Animal</term>
<term>Disease Progression</term>
<term>Female</term>
<term>Humans</term>
<term>Luminescent Measurements</term>
<term>Neoplasm Metastasis</term>
<term>Tumor Microenvironment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adhérence cellulaire</term>
<term>Animaux</term>
<term>Carcinogenèse</term>
<term>Femelle</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Mesures de luminescence</term>
<term>Microenvironnement tumoral</term>
<term>Modèles animaux de maladie humaine</term>
<term>Métastase tumorale</term>
<term>Numération cellulaire</term>
<term>Prolifération cellulaire</term>
<term>Évolution de la maladie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tumor microenvironments expose cancer cells to heterogeneous, dynamic environments by shifting availability of nutrients, growth factors, and metabolites. Cells integrate various inputs to generate cellular memory that determines trajectories of subsequent phenotypes. Here we report that short-term exposure of triple-negative breast cancer cells to growth factors or targeted inhibitors regulates subsequent tumor initiation. Using breast cancer cells with different driver mutations, we conditioned cells lines with various stimuli for 4 hours before implanting these cells as tumor xenografts and quantifying tumor progression by means of bioluminescence imaging. In the orthotopic model, conditioning a low number of cancer cells with fetal bovine serum led to enhancement of tumor-initiating potential, tumor volume, and liver metastases. Epidermal growth factor and the mTORC1 inhibitor ridaforolimus produced similar but relatively reduced effects on tumorigenic potential. These data show that a short-term stimulus increases tumorigenic phenotypes based on cellular memory. Conditioning regimens failed to alter proliferation or adhesion of cancer cells in vitro or kinase signaling through Akt and ERK measured by multiphoton microscopy in vivo, suggesting that other mechanisms enhanced tumorigenesis. Given the dynamic nature of the tumor environment and time-varying concentrations of small-molecule drugs, this work highlights how variable conditions in tumor environments shape tumor formation, metastasis, and response to therapy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31893233</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2379-139X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Tomography (Ann Arbor, Mich.)</Title>
<ISOAbbreviation>Tomography</ISOAbbreviation>
</Journal>
<ArticleTitle>Short-Term Environmental Conditioning Enhances Tumorigenic Potential of Triple-Negative Breast Cancer Cells.</ArticleTitle>
<Pagination>
<MedlinePgn>346-357</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.18383/j.tom.2019.00019</ELocationID>
<Abstract>
<AbstractText>Tumor microenvironments expose cancer cells to heterogeneous, dynamic environments by shifting availability of nutrients, growth factors, and metabolites. Cells integrate various inputs to generate cellular memory that determines trajectories of subsequent phenotypes. Here we report that short-term exposure of triple-negative breast cancer cells to growth factors or targeted inhibitors regulates subsequent tumor initiation. Using breast cancer cells with different driver mutations, we conditioned cells lines with various stimuli for 4 hours before implanting these cells as tumor xenografts and quantifying tumor progression by means of bioluminescence imaging. In the orthotopic model, conditioning a low number of cancer cells with fetal bovine serum led to enhancement of tumor-initiating potential, tumor volume, and liver metastases. Epidermal growth factor and the mTORC1 inhibitor ridaforolimus produced similar but relatively reduced effects on tumorigenic potential. These data show that a short-term stimulus increases tumorigenic phenotypes based on cellular memory. Conditioning regimens failed to alter proliferation or adhesion of cancer cells in vitro or kinase signaling through Akt and ERK measured by multiphoton microscopy in vivo, suggesting that other mechanisms enhanced tumorigenesis. Given the dynamic nature of the tumor environment and time-varying concentrations of small-molecule drugs, this work highlights how variable conditions in tumor environments shape tumor formation, metastasis, and response to therapy.</AbstractText>
<CopyrightInformation>© 2019 The Authors. Published by Grapho Publications, LLC.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Eckley</LastName>
<ForeName>Samantha S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buschhaus</LastName>
<ForeName>Johanna M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Humphries</LastName>
<ForeName>Brock A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Robison</LastName>
<ForeName>Tanner H</ForeName>
<Initials>TH</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luker</LastName>
<ForeName>Kathryn E</ForeName>
<Initials>KE</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luker</LastName>
<ForeName>Gary D</ForeName>
<Initials>GD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, MI.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI; and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R50 CA221807</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA238042</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA238023</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R33 CA225549</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 CA210152</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 CA222563</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA196018</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Tomography</MedlineTA>
<NlmUniqueID>101671170</NlmUniqueID>
<ISSNLinking>2379-1381</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>27432CM55Q</RegistryNumber>
<NameOfSubstance UI="D012710">Serum Albumin, Bovine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>48Z35KB15K</RegistryNumber>
<NameOfSubstance UI="C515074">ridaforolimus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>62229-50-9</RegistryNumber>
<NameOfSubstance UI="D004815">Epidermal Growth Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048049">Extracellular Signal-Regulated MAP Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063646" MajorTopicYN="Y">Carcinogenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002448" MajorTopicYN="N">Cell Adhesion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002452" MajorTopicYN="N">Cell Count</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018450" MajorTopicYN="N">Disease Progression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004815" MajorTopicYN="N">Epidermal Growth Factor</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048049" MajorTopicYN="N">Extracellular Signal-Regulated MAP Kinases</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008163" MajorTopicYN="N">Luminescent Measurements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009362" MajorTopicYN="N">Neoplasm Metastasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012710" MajorTopicYN="N">Serum Albumin, Bovine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064726" MajorTopicYN="N">Triple Negative Breast Neoplasms</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059016" MajorTopicYN="Y">Tumor Microenvironment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Fluorescence</Keyword>
<Keyword MajorTopicYN="Y">bioluminescence</Keyword>
<Keyword MajorTopicYN="Y">breast cancer</Keyword>
<Keyword MajorTopicYN="Y">signaling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31893233</ArticleId>
<ArticleId IdType="doi">10.18383/j.tom.2019.00019</ArticleId>
<ArticleId IdType="pii">TOMO.2019.00019.R1</ArticleId>
<ArticleId IdType="pmc">PMC6935992</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2018 Sep 5;8(1):13230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30185923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest New Drugs. 2016 Dec;34(6):740-749</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27450049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2019;1136:123-139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31201721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2019 Mar;33(3):4124-4140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30521382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1996 Dec 1;56(23):5522-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8968110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Micromachines (Basel). 2016 Sep 01;7(9):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30404324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Imaging. 2015;14:414-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26431589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Discov. 2012 May;2(5):401-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22588877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Jun 19;157(7):1724-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24949979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Nov 27;9(1):5005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30479345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2934-2939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28246332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 1;410(6824):50-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11242036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2019 May;17(5):1142-1154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30718260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2008 Jul 15;80(14):5565-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18533683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2011 Jun;36(6):320-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Med. 2007 Sep;58(3):473-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17763357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 1992 Jan;65(1):90-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1310253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Struct Funct. 2016 Jul 22;41(2):81-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27247077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2017 Mar 9;17(1):73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28274196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2011 Jun;10(6):417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21629292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Mar 4;144(5):646-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Dec 1;64(23):8604-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e60576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neoplasia. 1999 Aug;1(3):197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10935474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2016 Oct 15;22(20):5087-5096</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27154914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2012 Apr 15;18(8):2316-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22261800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2008 Sep;118(9):3065-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18725988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9292-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27486245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Apr 7;11(1):111-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25818297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stem Cells. 2016 Sep;34(9):2290-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27301070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Drug Deliv Rev. 2012 Dec 1;64(Suppl):353-365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24511174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Med Biol. 2004 Aug 7;49(15):3389-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15379021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breast Cancer Res Treat. 2012 Jul;134(2):561-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22610646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2019 Jul 09;12(589):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31289212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Apr 8;240(4849):177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2451290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1999 Dec 1;59(23):5863-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10606224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypoxia (Auckl). 2015 Dec 11;3:83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27774485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2015 Apr 16;34(16):2043-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24909174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest New Drugs. 2019 Apr 24;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31020608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Radiat Oncol Biol Phys. 1989 Apr;16(4):931-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2703399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogenesis. 2015 Feb 09;4:e138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25664931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2009 Apr;8(4):742-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19372546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2010 Mar 1;126(5):1121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19685490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 Jul;18(7):1052-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22683778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2018 Jul 03;28(1):69-86.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29972798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 1992 May;151(2):386-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1572910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2011 Dec 04;18(1):172-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22138753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 1997 Feb;3(2):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9018236</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Humphries, Brock A" sort="Humphries, Brock A" uniqKey="Humphries B" first="Brock A" last="Humphries">Brock A. Humphries</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Eckley, Samantha S" sort="Eckley, Samantha S" uniqKey="Eckley S" first="Samantha S" last="Eckley">Samantha S. Eckley</name>
</region>
<name sortKey="Buschhaus, Johanna M" sort="Buschhaus, Johanna M" uniqKey="Buschhaus J" first="Johanna M" last="Buschhaus">Johanna M. Buschhaus</name>
<name sortKey="Luker, Gary D" sort="Luker, Gary D" uniqKey="Luker G" first="Gary D" last="Luker">Gary D. Luker</name>
<name sortKey="Luker, Gary D" sort="Luker, Gary D" uniqKey="Luker G" first="Gary D" last="Luker">Gary D. Luker</name>
<name sortKey="Luker, Kathryn E" sort="Luker, Kathryn E" uniqKey="Luker K" first="Kathryn E" last="Luker">Kathryn E. Luker</name>
<name sortKey="Robison, Tanner H" sort="Robison, Tanner H" uniqKey="Robison T" first="Tanner H" last="Robison">Tanner H. Robison</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000237 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000237 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31893233
   |texte=   Short-Term Environmental Conditioning Enhances Tumorigenic Potential of Triple-Negative Breast Cancer Cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31893233" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020